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A B S T R A C T

Authentication of geographical origin of virgin olive oils is necessary to protect consumer and producers from
frauds. A method able to classify virgin olive oils from the main worldwide producing countries is still missing.
In this work, we developed 3 chemometric approaches for classification of virgin olive oils from Italy, Spain,
Greece, Portugal, Tunisia and other countries all over the world. The approaches were developed starting from a
data-set containing fatty acid composition and the amount of 72 volatile compounds, evaluated by a never
applied HS-SPME-GC-MS quantitation method, of 1217 oil samples from three different olive oil campaign. The
approach that gave the best predictive results is based on Linear Discriminant Analysis run on quantitative data
from only 25 volatile compounds selected by one-way ANOVA as the most capable in discriminating between the
diverse origins. The method was built and internally validated using a training-set of 1000 samples and ex-
ternally validated with a test-set of 217 independent samples. The method was able to classify the geographical
origin of 94.5% samples, with a percentage of correct classification even higher than 97% for some origins.
Preliminary studies also suggested the proposed approach is able to correctly classify the geographical origin of
binary mixtures of oils from different origins. The approach proposed in this manuscript is easily applicable in
testing laboratories and represents a very useful tool for the olive oil field, helping in protecting consumers and
producers from frauds.

1. Introduction

Many are the factors affecting the type and the concentration of
volatile organic compounds (VOCs) in virgin olive oils (VOOs), in-
cluding varietal origin, pedoclimatic conditions during olive growing,
harvesting period, olive processing conditions, type of filtration and
storage conditions, and geographical origin (Angerosa, 2002;
Campestre, Angelini, Gasbarri, & Angerosa, 2017; Choe & Min, 2006;
Kalua et al., 2007; Lukic, Carlin, Horvat, & Vrhovsek, 2019; Trapani
et al., 2017; Vichi, Pizzale, Conte, Buxaderas, & Lopez-Tamames, 2003).
The typical fruity and green notes of extra virgin olive oils (EVOOs) are
mainly due to a series of C5 and C6 aldehydes, alcohols and esters,
originated by the lipoxygenase (LOX) pathway (Angerosa, Mostallino,
Basti, & Vito, 2001; Campestre et al., 2017). On the other side, sensory
defects can originate, among other, from microbiological and oxidative
activities and several studies have been carried out in order to define

the molecules responsible for the different sensory defects (Angerosa,
Lanza, D'Alessandro, Marsilio, & Cumitini, 1999; Aparicio, Rocha,
Delgadillo, & Morales, 2000; Morales, Rios, & Aparicio, 1997; Morales,
Luna, & Aparicio, 2005; Cecchi et al., 2019).

At the same time, it is still necessary a chemical/analytical method
for authentication of VOOs according to the geographical origin
(Bajoub et al., 2018; Berlioz et al., 2006). Indeed, consumers demand
and are available to pay more for EVOOs with specific characteristic
linked to the geographical origin, and producers need to be able to
correctly communicate to buyers and consumers the specific char-
acteristics giving added value to their product (European Community,
2006); EU Regulation 1151/2012; Fregapane and Salvador, 2019). The
price of these products is often higher than EVOOs with no specific
characteristics, thus economic frauds regarding false claim of geo-
graphical origin of the product on the label are spreading on the market
and, to date, cannot be fully avoided (Bajoub et al., 2018; Cajka et al.,
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2010; Garcia, Martins, & Cabrita, 2013).
Several approaches, based on different analytical techniques and/or

statistical approaches, have been proposed for assessing the geo-
graphical origin. The use of Nuclear Magnetic Resonance (1H NMR) has
been rewieved, and the authors concluded that studies with high
number of samples from different olive oil crops and robust statistical
analysis are still necessary (Dais & Hatzakis, 2013). In this sense, more
recently, a 1H-NMR-chemometric characterization of 383 EVOOs from
9 Italian regions collected in three different harvesting years, was car-
ried out for authentication of their geographical origin, with prediction
capability ranging 60–100% for the different regions after applying
Hierarchical Cluster Analysis (HCA) (Ingallina et al., 2019). Analysis of
trace elements by ICP-MS and δ13C isotope ratio by Isotope Ratio Mass
Spectrometry (IRMS), followed by Principal Component Analysis (PCA)
and HCA, were applied for assessing the geographical origin of a total of
49 EVOOs from 6 different Turkish areas, with promising but pre-
liminary results (Gumus, Celenk, Tekin, Yurdakul, & Ertas, 2017). Tri-
glyceride fingerprinting data acquired by both reverse and normal
phase HPLC coupled to Charged Aerosol Detector (CAD) and High
Temperature-GC-FID analysis of 65 EVOOs were analyzed by PCA, PLS-
DA and SIMCA for assessing the geographical origin of samples of Ar-
bequina cv from three Spanish regions: the proposed model gave sa-
tisfactory results only after applying data fusion for combining data
obtained from the three applied techniques (Vera, Jimenez-Carvelo,
Cuadros-Rodriguez, Ruisanchez, & Pilar Callao, 2019). Phenolic and
sterolic fingerprinting by UHPLC-ESI/QTOF-MS was recently applied
for discriminating between Tunisian and Italian EVOOs (Ben Mohamed
et al., 2018) and between EVOOs from 6 different Italian regions
(Ghisoni et al., 2019): the two studies are based on a total of 15 and 26
samples, respectively, with one part of samples purchased on the
market and the other part extracted at laboratory scale. The authors
concluded that, despite the encouraging results of the new proposed
approach, further investigations based on higher numbers of samples,
from several origins are advisable (Ghisoni et al., 2019). Selected Ion
Flow Tube Mass Spectrometry (SIFT-MS) was applied to a total of 130
EVOOs from six regions belonging to 4 countries in the Mediterranean
area and the proposed PLS-DA model gave excellent prediction accu-
racy (Bajoub et al., 2018); the main limit of the study is the data-set,
constituted by no more than 25 EVOOs for each origin from the same
olive oil crop. More recently, Laser Induced Breakdown Spectroscopy
(LIBS) has been proposed in combination with Linear Discriminant
Analysis (LDA) for assessing the geographical origin of VOOs, but again
the main weakness of the work is given by the small number of samples
(8), all from different regions of the same country (Greece) (Gazeli,
Bellou, Stefas, & Couris, 2020).

Besides these and other approaches for authentication of the geo-
graphical origin proposed in the literature and not discussed herein
(Camin et al., 2010; Mallamace et al., 2017; Persuric, Saftic, Masek, &
Pavelic, 2018; Portarena, Baldacchini, & Brugnoli, 2017; Quintanilla-
Casas et al., 2020; Sayago, Gonzalez-Dominguez, Beltran, & Fernandez-
Recamales, 2018; Souayah et al., 2017; Techer, Medini, Janin, &
Arregui, 2017), the volatile profile of VOOs has been reported as
strongly affected by the growing area and used for proposing ap-
proaches for authentication of the geographical origin (Lukic et al.,
2019; Ouni et al., 2011; Pizarro, Rodriguez-Tecedor, Perez-del-Notario,
& Gonzalez-Saiz, 2011; Pouliarekou et al., 2011; Zunin, Boggia,
Salvadeo, & Evangelisti, 2005). In one of these recent studies, the vo-
latile fraction of a total of 30 Croatian samples was in depth studied by
GC × GC-TOF-MS, and used for discriminating the samples according
to the geographical origin (Lukic et al., 2019); Pouliarekou et al. (2011)
analyzed the volatile fraction of a total of 51 samples from 6 Greek
regions by HS-SPME-GC-MS, and classified them using LDA, while
Pizarro et al. (2011) used the same analysis followed by LDA for clas-
sifying a total of 40 samples from 3 Spanish regions. Some researchers
also combined VOCs profile and fatty acid (FAs) composition aiming at
an improved geographical differentiation working on a total of 74

samples from two olive oil crops and four areas in Greece: the proposed
LDA model allowed obtaining 81.1% of correct classification, slightly
higher than the percentage obtained only using the volatile profile
(79.7%) (Kosma et al., 2017).

As above explained and confirmed in other studies (Ben Mansour,
Chtourou, Khbou, Flamini, & Bouaziz, 2017), the most of the papers
present in the literature are based on small numbers of samples, often
from one single olive oil crop. Other authors, working with larger
numbers of samples, aimed at distinguish between one geographical
origin and all the other ones, e.g. “Ligurian” from “non-Ligurian”
samples (Cajka et al., 2010) or “100% Italian” from “non-100% Italian”
samples (Melucci et al., 2016). As also reported in some of the above
mentioned papers (Bajoub et al., 2018; Ghisoni et al., 2019), pluri-an-
nual studies including a very high number of samples are strongly ad-
visable in order to obtain powerful, robust and reliable models suitable
to classify virgin olive oils according to the geographical origin.

For these reasons, in this work, we aimed at proposing a model
suitable for authentication of the geographical origin of virgin olive oils
from five different countries, including the main worldwide producers
(Spain, Greece, Italy, Tunisia and Portugal), in addition to a group of
oils from other countries. To this aim, we collected a total of 1217
virgin olive oil samples with different categories (EVOO and VOO)
according to chemical and sensorial analysis, and from three different
olive oil crops (2016–2017, 2017–2018, 2018–2019). The profile of
Volatile Organic Compounds (VOCs) of all the samples was then char-
acterized by a method recently optimized and validated by our group
(Fortini, Migliorini, Cherubini, Cecchi, & Calamai, 2017): this method is
based on a widely used technique (HS-SPME-GC-MS) and on a new
approach for the quantification of 73 VOCs. This approach, using up to
11 internal standard for area normalization, allows for quantitation of
VOCs with a higher accuracy than the typical methods only using one
internal standard and in a wider range of calibration (Fortini et al.,
2017). Finally, this method has never been applied for authentication of
the geographical origin of virgin olive oils. At the same time, the
composition of FAs of a reduced group of samples was analyzed and all
the collected data were subjected to suitable statistical analysis in order
to propose the model.

2. Materials and methods

2.1. Chemicals and standard solutions

All chemicals and standards of analytical reagent grade were from
Sigma-Aldrich (Steinheim, Germany). Volatile standards used for pre-
paring solutions for external calibration curves (ExtStd) in a refined
olive oil free from VOCs were from Sigma-Aldrich (Steinheim,
Germany): purity was 50.0% for Z-3-hexenal, 90.0% for E,E-hepta-2,4-
dienal and E,E-nona-2,4-dienal, 85.0% for E,E-deca-2,4-dienal and
≥95.0% for all other standards. Internal standard solution was pre-
pared by weighing acetic acid-2,2,2-d3 (≥99.0%), 6-chloro-2-hexanone
(≥97.0%), butanol-d10 (≥99.0%), 4-methyl-2-pentanol (≥98.0%), 3-
octanone (≥98.0%), ethyl acetate-d8 (≥99.0%), 3,4-dimethylphenol
(≥98.0%), toluene-d8 (≥99.6%) and trimethylacetaldehyde (≥96.0%)
(all from Sigma-Aldrich, Steinheim, Germany) in refined olive oil
(IntStd). Six diluted solutions constituted by the same amount of IstStd
and different amounts of ExtStd were then prepared for quantification
purpose according to previous works (Fortini et al., 2017). These so-
lutions were stored in the dark at −20 °C until analyses.

FAME mix CRM18917 - C14–C22 referenced material was pur-
chased from Supelco, Sigma-Aldrich (Darmstadt, Germany). Inert
gasses (He and N2 99.999% purity) were supplied by SOL gas company.

2.2. Samples

A total of 1217 virgin olive oil samples each from different geo-
graphical origins were collected from the Carapelli laboratory

L. Cecchi, et al. Food Control 112 (2020) 107156

2



(Carapelli S.p.A., Tavarnelle Val di Pesa, Florence, Italy) during 2016/
17, 2017/18 and 2018/19. Samples distribution was almost re-
presentative of the worldwide virgin olive oil production: in particular,
samples were from Spain (code “S”, 340 samples), Italy (“I”, 408),
Greece (“G”, 246), Tunisia (“T”, 85), Portugal (“P”, 98) and other (“O”,
40), with samples labelled as “O” that were from Peru (3), Morocco (8),
Australia (24), Albania (1), California (2), and Argentina (2). Samples
were classified as EVOO (600 samples) or VOO (617 samples) after
chemical and sensorial analysis, according to the methods described in
the next paragraph.

Furthermore, a set of 80 samples constituted by binary mixtures of
virgin olive oils of different geographical origins belonging to Italy,
Spain, Tunisia, Greece and Portugal was collected; these samples were
prepared in the Carapelli laboratory starting from oils with a known
origin.

2.3. Chemical and sensorial analysis for oil classification

Legal quality indices used for classification of samples were de-
termined according to European Regulations (European Economic
Community, 1991): the chemical ones consisted of free acidity, per-
oxide value and spectrophotometric indices, while for the sensorial one,
the Panel Test was carried out by a team acknowledged by the Italian
Ministry of Agricultural Policies (MIPAAF), according to EU Reg. 2568/
1991. The obtained results used for confirming samples’ classification
are not reported.

2.4. Fatty acid composition

The composition of fatty acids (FAs) of a subset of 180 samples
(G = 36, I = 36, P = 36, S = 36, O = 36 (2 from Peru, 16 from
Australia, 18 from Tunisia)) was analyzed according to the
International Olive Council official method (IOC/T.20/Doc No. 33/
Rev.1) after slight modifications. Briefly, trans-esterification was ap-
plied to the samples for preparation of fatty acid methyl esters (FAMEs):
0.02 g of samples were dissolved in 4 mL of heptane in the presence of
0.4 mL of 2.0 N methanolic potassium hydroxide and vigorously
shaken. The obtained FAMEs mix was analyzed by GC with an Agilent
Technologies (7890B) chromatograph (Palo Alto, CA, USA) equipped
with a capillary GC column BPX70, 60 m × 0.25 mm i.d., 0.25 μm f.t.,
from SGE Analytical Science (Ringwood Victoria, Australia) and a FID
detector. Injection volume, 1 μL; carrier gas, nitrogen at 1 mL/min;
injector and detector temperature, 250 °C. The initial oven temperature
was kept at 180 °C for 12 min, raised to 220 °C, with 10 °C/min gra-
dient, and it was maintained for 5 min; after that, the temperature
reached 250 °C, with 12 °C/min gradient, and finally maintained for
5 min. Ten FAs, namely C16:0, C16:1, C18:0, C18:1, C18:2, C18:3,
C20:0, C20:1, C22:0 and C24:0, in addition to C18:1, C18:2 and C18:3
trans FAs, were identified based on retention time and comparison with
C14–C22 referenced material FAME mix CRM18917 from Supelco,
Sigma-Aldrich (Darmstadt, Germany). For each sample, the composi-
tion of FAs was evaluated in terms of peak area percentage.

2.5. HS-SPME-GC-MS analysis of volatile organic compounds

Volatile fraction of all samples was analyzed by the validated HS-
SPME-GC-MS method previously described (Fortini et al., 2017).
Briefly, approx. 4.3000 g of sample and approx. 0.1000 g of the internal
standard mix solution were exactly weighed into a 20 mL screw cap
vials. A 1-cm SPME fiber 50/30 μm DVB/CAR/PDMS by Agilent (Palo
Alto, CA, USA) was exposed under orbital shaking at 400 rpm and 45 °C
for 20 min in the vial headspace, after sample equilibration for 5 min at
45 °C. VOCs were then desorbed for 1.7 min in the injection port of a
6890N GC system equipped with a 5975-model MS detector, (Agilent,
Palo Alto, CA, USA) and separated using a HP-Innowax capillary
column (50 m × 0.2 mm i.d., 0.4 μm film thickness), then the fiber was

conditioned for 20 min at 260 °C. Initial oven temperature was 40 °C for
2 min; it was then raised to 156 °C with 4 °C/min, and then to 260 °C
with 10 °C/min. Carrier gas was helium at 1.2 mL/min. The tempera-
ture of transfer line and ion source were 250 °C and 230 °C, respec-
tively. Mass detector conditions: scan mode, 30–350 Th mass range,
1500 Th/s, IE energy 70 eV.

The 73 VOCs were identified by comparison with mass spectra and
retention times of authentic standards; since 2-methylbutanol and 3-
methylbutanol co-elute, they were considered together and, for each
sample, the output was given by 72 quantitative results. For each VOC,
the more suitable internal standard was selected for area normalization
before quantitation. Each VOC was quantified using a six point linear
least squares calibration line in which the area ratio was plotted versus
the amount ratio. Each calibration line was built using the relative pure
standard. The method was validated as previously described (Fortini
et al., 2017).

2.6. Data analysis

Two data matrices (namely Mij1 and Mij2) were built, both having
the following form:

Mij = (Si, Cj)

Mij1 was built with the data-set also including data from composition of
FAs: in this matrix Si is the ith of the 180 samples and Cj is the jth of the
84 variables (12 FAs and 72 VOCs). Mij2 was built with the data-set
only including data related to the VOCs profile: in this matrix Si is the
ith of the 1217 samples and Cj is the jth of the 72 variables (namely, the
72 VOCs). Each value in the matrices is the amount (in % w/w for FAs
and in mg/kg for the VOCs) of the considered sample.

Starting from these two matrices, three approaches for classification
of samples according to their geographical origin have been developed
and proposed. All the three approaches were based on the use of Linear
Discriminant Analysis (LDA) as pattern recognition technique. It is
based on searching for the discriminant functions able to achieve
maximum separation among the samples’ categories through max-
imization of between-class variance and minimization of within-class
variance. These new discriminant functions are a linear combination of
the original variables, and are named canonical variables (Pizarro et al.,
2011). Wilks' Lambda test was used to confirm the significance of the
discriminant functions in discriminating between the different origins.
During the development of the approaches, we kept into account that,
when LDA is applied as pattern recognition technique, the number of
variables should not exceed the number of samples (Pizarro et al.,
2011). Diverse strategies for reducing the number of variables were
applied, as described in the following paragraphs in which the ap-
proaches are presented: these strategies mainly used two statistical
tools, namely Principal Component Analysis (PCA) and one-way Ana-
lysis of Variance ANOVA.

PCA was used on Mij1 as non-supervised technique with the main
goal of reducing the complexity of data, transforming the original
variables in new ones, called Principal Components (PCs), to be used in
the following LDA, using the scores as the quantitative values. These
PCs are orthogonal to each other, meaning that each PC is uncorrelated
with the other ones. The first 20 PCs were selected, based on eigen-
values higher than 1 (total explained variance 78.0%). One-way
ANOVA and F-test were run on Mij2 for assessing which variables are
able to discriminate between oils from different origins; Fisher Least
Significant Difference (LSD) test was then used for comparing the
averaged values and for assessing which origins are differentiated by
that variable, at level of significance of 0.05.

The stability of all the proposed models was internally validated by
the leave-one-out cross-validation procedure. Furthermore, for the
models involving a number of samples big enough, an external vali-
dation was performed using a test-set of samples not used to construct
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the model. Finally, one of the three models was furtherly validated
using a set of 80 samples constituted by binary mixtures of virgin olive
oils of different geographical origins, in order to test its capability of
recognize the origin of both the oils present in the mixture.

All statistical processing of data were performed using OriginPro
2018 (OriginLab Corporation, Northampton, MA 01060 USA http://
www.originlab.com).

3. Results and discussion

The final objective of this paper was to propose a reliable chemo-
metric approach for the authentication of geographical origin of virgin
olive oils from the main worldwide producing countries. The method
we want to propose must be as easily applicable as possible in testing
laboratories, with sustainable timing and costs.

To this aim, we selected two type of chemical analysis (composition
of FAs and volatile profile) able to give lots of information, and suitable
statistical tools for treating the data, for analyzing up to 1217 com-
mercial virgin olive oil samples from several origins. We obtained
quantitative data for a total of 84 parameters (72 VOCs and 12 FAs) for
each of the analyzed samples. Starting from this huge dataset and ap-
plying suitable statistical tools, we proposed three approaches for au-
thentication of the geographical origin of virgin olive oils, as described
in the following paragraphs.

Because many are the papers in the literature that describe the
volatile profile and the FAs profile of virgin olive oils, this aspect is out
of the aims of this work and not discussed. In the next paragraphs, the
obtained data will only be used for building models for assessing geo-
graphical origin of olive oil and to briefly discuss on what VOCs dif-
ferentiated the most between the diverse origins.

3.1. Authentication of geographical origin according to VOCs and FAs

To our knowledge, none of the works in the literature proposed a
model for authentication of the geographical origin of VOOs including
samples from the first five worldwide producing countries simulta-
neously, and based on quantitative data on VOCs and FAs of a high
number of commercial virgin olive oils from three consecutive olive oil
crops. For these reasons, the first model we built for authentication of
geographical origin involved composition of FAs together with the
profile of the VOCs. The composition of FAs has been used in the past
for classification of olive oils according to their origin, with sometimes
satisfactory and sometimes less satisfactory results (Di Bella et al.,
2007; Kosma et al., 2017; Longobardi et al., 2012). These studies re-
vealed a wide variability of FA composition as a function of geo-
graphical origin.

The dataset (matrix Mij1) was constituted by 5 classes (namely,
Spain, Portugal, Italy, Greece, Other) each with the same number of
samples (36). All the variables in the matrix Mij1 were considered with
no selection, so that none of the available information was a priori
excluded. By this way, we applied a PCA-LDA approach for building a
model that likely gives the best predictive results with the available
data. Since LDA can be used only with matrices having a number of
samples higher than the number of variables for each class (Pouliarekou

et al., 2011), we initially applied PCA on the 84 variables (12 FAs and
72 VOCs) in order to select a reduced number of PCs for using them in
the following LDA. We selected the first 20 PCs, as described in the
Material and Methods section. Consequently, LDA was run using a new
matrix (Mij1b, 180 × 20) in which Si is the ith of the 180 samples and Cj
is the jth of the 20 selected scores from the PCs. The predictive cap-
ability of the model was internally validated by leave-one-out cross-
validation procedure. The model was built to be able to classify samples
in the categories Spain (S), Portugal (P), Italy (I), Greece (G) and Other
(O) and the samples were allocated in one of the 5 categories only if the
post classification probability (CP th %) was higher than 50% for that
category. This threshold value was chosen as a compromise to have the
highest number of samples classified by the model with no risk of
having samples with more than one classification.

Table 1 shows the results obtained after LDA and leave-one-out
cross-validation. Overall, 175 out of the 180 samples (97.2%) were
classified by the model, and 151 out of the 175 classified samples
(86.3%) were correctly allocated. Noteworthy, 91.4% of samples from
Italy and 100% of samples from Greece were correctly classified, while
the percentage of correctly classified Spanish and Portuguese samples
was slightly lower. Regarding the wrongly classified samples of these
two origins, it emerges that all the Portuguese samples were classified
as Spanish and vice-versa. These findings can be explained considering
that the territories of the two countries (Spain and Portugal) both be-
long to the Iberian peninsula, and are not so clearly distinguishable
with this approach using all the information initially available with no
selection.

The obtained results were very satisfactory and even higher than
those reported in the literature by other authors working on the
quantitative data of VOCs and FAs, which obtained 81.1% of correct
classification working on samples from different geographical area of
Greece (Kosma et al., 2017).

3.2. Authentication of geographical origin only based on VOCs

The results obtained using the PCA-LDA approach working with
both FAs and VOCs quantitative data gave satisfactory results. In order
to propose a cheaper and more easily applicable model, to gain quali-
tative information, to try to better distinguish also between Spain and
Portugal and to extend the groups of classes also adding Tunisia, we
built a new model only based on VOCs of a huge number of samples
(1217).

The new dataset (matrices Mij2) was thus constituted by all samples
from the 6 classes reported in paragraph 2.2 (Spain, Portugal, Italy,
Greece, Tunisia and Other, this latter category with samples from
countries in Europe, South America, North America, Africa and
Oceania).

Data in the matrix Mij2 were initially subjected to one-way analysis
of variance (ANOVA) and averaged values were compared by LSD in
order to assess which couples of classes are distinguished by each VOC.
In Table 2, the 72 quantified VOCs are listed according to decreasing F-
ratio and the significance of each VOC in discriminating between each
possible couple of origins is reported in the next 15 columns.

As we can see, 64 out of the 72 VOCs have a ratio F/F-crit greater

Table 1
Results obtained for each geographical origin after leave-one-out cross-validation using data from both fatty acid composition and volatile profile. In each line, there
is the number (in the brackets) and the percentage of Virgin Olive Oil samples of that origin assigned by the model to the origin in the columns. The figures in bold
corresponds to the correctly assigned samples.

Origin Spain Portugal Italy Greece Other Total Classified

Spain 76.5% (26) 20.6% (7) 2.9% (1) – – 36 94.4% (34)
Portugal 22.2% (8) 77.8% (28) – – – 36 100.0% (36)
Italy – 2.9% (1) 91.4% (32) – 5.7% (2) 36 97.2% (35)
Greece – – – 100.0% (35) – 36 97.2% (35)
Other – 5.7% (2) 8.6% (3) – 85.7% (30) 36 97.2% (35)
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Table 2
List of the 72 quantified VOCs (1st column) sorted by decreasing Fisher F-ratio (2nd column). The following 15 columns report all the possible binary combinations of
the 6 geographical origins (S, Spain; T, Tunisia; P, Portugal; I, Italy; G, Greece; O, Other) of VOO samples: value 1 indicates that the difference of means for the VOC in
that row is significant at the 0.05 level for the two origins, while value 0 indicates that the difference is not significant. The first 25 VOCs, used for building the model,
are in bold in the table; the name of the molecules originated by LOX pathway is followed by †

n° VOCs F/F-crit. S-T P-T P–S I-T I–S I–P G-T G-S G-P G-I O-T O–S O–P O–I O-G

1 Hexyl acetate † 106.7 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1
2 E-2-hexenal † 82.5 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1
3 Z-3-hexenyl acetate † 68.9 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1
4 Pentan-2-ol 65.5 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1
5 Octan-1-ol 54.1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1
6 Oct-1-en-3-ol 50.1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 0
7 Heptan-1-ol 46.3 1 1 0 1 0 0 0 1 1 1 0 1 1 1 1
8 Hexan-1-ol † 45.6 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1
9 Nonanal 43.0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 1
10 Phenyl ethanol 42.6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
11 6-methylhept-5-en-2-one 41.8 0 0 1 0 1 0 1 1 1 1 0 0 0 0 1
12 E-2-hexenol † 41.0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1
13 Z-3-hexenol † 35.7 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
14 Pent-1-en-3-ol † 35.6 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1
15 Octanal 30.9 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0
16 E-2-decenal 30.5 0 0 0 0 1 0 1 1 1 1 0 0 0 0 1
17 Ethyl Acetate 26.7 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1
18 Heptan-2-ol 25.8 1 0 1 1 1 1 1 1 1 1 0 1 0 1 1
19 Oct-1-en-3-one 25.1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1
20 Methyl Acetate 24.4 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1
21 Ethanol 22.7 1 0 1 0 1 0 0 1 1 1 1 1 0 0 1
22 Acetic acid 21.7 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1
23 Heptanal 21.2 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1
24 Octane 20.8 1 0 1 0 1 0 1 1 1 1 1 0 1 1 0
25 Hexanal † 20.1 1 0 1 0 1 0 1 1 1 1 0 1 1 1 1
26 Propanoic acid 17.8 1 1 0 1 0 1 1 0 1 0 1 1 1 1 1
27 2-methyl+3-methyl-1-butanol 17.1 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1
28 2-methylbutanal 16.0 1 1 1 1 0 1 1 0 1 1 1 0 1 0 0
29 E,E-Hepta-2,4-dienal 15.4 0 0 1 1 1 1 0 0 0 1 0 0 0 1 0
30 Isobutanol 14.4 1 1 0 0 1 1 1 0 0 1 0 1 1 0 1
31 Guaiacol 14.4 0 1 1 0 0 1 0 0 1 0 1 1 1 1 0
32 Isovaleraldehyde 14.2 1 0 1 1 0 1 1 1 1 1 1 0 1 0 0
33 Octan-2-one 14.2 1 1 0 1 0 0 0 1 1 1 1 0 1 1 1
34 Methanol 13.6 1 1 1 1 1 0 0 1 1 1 1 1 0 1 0
35 Decanal 12.8 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0
36 Z-3-hexenal † 12.6 0 1 1 1 1 0 0 0 1 1 0 0 1 1 0
37 Nonan-1-ol 12.6 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1
38 Benzaldehyde 12.5 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1
39 E,E-Deca-2,4-dienal 12.5 1 1 1 1 0 1 1 0 1 0 1 0 1 0 0
40 4-Ethyl phenol 12.1 0 1 1 1 1 0 1 1 0 0 0 1 1 1 1
41 Butanoic acid 11.4 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
42 E-2-octenal 11.2 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0
43 Ethyl butanoate 10.0 1 0 1 0 1 0 1 1 0 0 1 0 1 1 1
44 Pent-1-en-3-one † 9.9 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1
45 E-2-pentenal † 9.4 0 0 1 1 1 1 1 1 1 0 0 1 0 0 0
46 Heptan-2-one 9.2 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0
47 Pentan-3-one 8.4 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1
48 Ethyl propanoate 8.0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1
49 E-2-pentenol † 6.3 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
50 Limonene 6.3 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1
51 Butan-2-ol 6.1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 1
52 E,E-Hexa-2,4-dienal 5.7 0 1 1 1 1 0 0 0 1 1 0 0 1 1 0
53 E-2-heptenal 5.4 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1
54 Propanol 3.8 1 0 0 0 1 1 1 0 0 1 1 0 0 1 0
55 E-3-hexenol 3.6 0 1 1 0 0 1 1 0 1 0 1 1 0 1 0
56 E-2-nonenal 3.3 1 1 0 1 0 0 0 1 1 1 0 0 0 0 0
57 Z-2-hexenol 3.2 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0
58 4-Ethylguaiacol 2.4 0 1 1 0 0 1 0 1 0 0 1 1 1 1 1
59 Pentanoic acid 2.3 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1
60 Valeraldehyde 1.9 0 0 1 0 1 0 0 0 1 1 1 1 1 1 1
61 Phenol 1.8 1 0 1 1 0 1 1 0 1 0 0 0 0 0 0
62 Hexanoic acid 1.1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0
63 Heptane 1.0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0
64 Pentanol 1.0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
65 Butyl acetate 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
66 Butan-2-one 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
67 E,E-Nona-2,4-dienal 0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
68 Methyl propanoate 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
69 E-2-hexenyl acetate 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
70 Z-2-pentenol † 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
71 Octan-2-ol 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
72 Nonan-2-one 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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than 1, thus being able to differentiate at least one couple of origin. The
only VOCs not capable of differentiating between the origins were butyl
acetate, butan-2-one, E,E-nona-2,4-dienal, methyl propanoate, E-2-
hexenyl acetate, Z-2-pentenol, octan-2-ol and nonan-2-one (Table 2).

It also immediately emerged that the first three VOCs belong to the
molecules originated by the LOX pathway and that 7 out of the 13
molecules from the LOX pathway are ranked in the first 15 positions in
Table 2. Starting from this information, and in an attempt to propose an
approach using a very low number of quantified VOCs, we built a model
only using the 13 molecules originated from the LOX pathway, namely
hexyl acetate, E-2-hexenal, Z-3-hexenyl acetate, hexan-1-ol, E-2-hex-
enol, Z-3-hexenol, pent-1-en-3-ol, hexanal, Z-3-hexenal, pent-1-en-3-
one, E-2-pentenal, E-2-pentenol and Z-2-pentenol.

Given the availability of a higher number of data, the entire data-set
has been randomly split in two subsets: a training-set (1000 samples)
for building and internally validate the model, and a test-set (217
samples) to be used for the external validation of the model. The
composition of the two subsets is shown in Table 3.

For building the model, LDA was thus run using a new matrix
(Mij2b, 1000 × 13) in which Si is the ith of the 1000 samples in the
training-set and Cj is the jth of the 13 selected VOCs. As for the model
built using both VOCs and FAs, the predictive capability of the model
was internally validated by leave-one-out cross-validation procedure.
The model was built to be able to classify samples in the categories
Spain (S), Portugal (P), Italy (I), Greece (G), Tunisia (T) and Other (O)
and again the samples were allocated in one of the 6 categories only if
the post classification probability (CP th %) was higher than 50% for
that category. The prediction capability of this model was furtherly
assessed using the test-set as set of independent samples for the external
validation. The obtained results from both internal and external

validation are shown in Table 4. Overall, the model was able to classify
855 out of the 1000 samples (85.5%) of the training set and 188 out of
the 217 samples (86.6%) of the test set. This means that this model has
a lower capability of classifying the samples according to their origin
with respect to the one built with both FAs and VOCs (Table 1).
Moreover, also the percentage of correctly classified samples was lower:
indeed, 706 out of the 855 classified samples (82.6%) of the training-set
and 145 out of the 188 classified samples (77.1%) of the test-set were
correctly classified, that is lower than the 86.2% obtained with the first
model. In particular, the model was not able to correctly classify a
sufficient % of samples from Italy and Portugal, suggesting that the
molecules from the LOX pathway alone are not able to well distinguish
these two classes from the others.

In order to improve the model capability in classification of samples
according to their geographical origin, we built a third model, based on
the same approach of the second model and using the same subsets of
samples (Table 3), but selecting a new group of VOCs according to their
F/F-crit ratio values, which had to be higher than 20. By this way, the
first 25 VOCs in Table 2 were selected and the new model was built
running LDA on the new matrix (Mij2c, 1000 × 25) in which Si is the ith
of the 1000 samples in the training-set and Cj is the jth of the 25 se-
lected VOCs. From a chemical point of view, 11 out of the 25 selected
VOCs were alcohols, while the others were aldehydes (6), esters (4),
ketones (2), carboxylic acids (1) and hydrocarbons (1), suggesting that
alcohols are the chemical class more able to differentiating between the
different origins, followed by aldehydes and esters. Again, the model
was built to be able to classify samples in the categories Spain (S),
Portugal (P), Italy (I), Greece (G), Tunisia (T) and Other (O) according
to post classification probability (CP th %) higher than 50% for that
category and its predictive capability was validated both internally, by
leave-one-out cross-validation procedure, and externally, using the test-
set as set of independent samples. Fig. 1 shows the score of each sample
on the plane of the first two canonical variables (74% of the variance
explained), while the obtained results are shown in Table 5. Overall, the
improved model was able to classify 914 out of the 1000 samples
(91.4%) of the training set and 205 out of the 217 samples (94.5%) of
the test set. The capability of this model of classifying the samples ac-
cording to their origin is definitely higher than that only based on the
molecules from LOX pathway and only slightly lower than the one built
with both FAs and VOCs. Also the percentage of correctly classified
samples was strongly increased with respect to the second model: 806
out of the 914 classified samples (88.1%) of the training-set and 179 out
of the 205 classified samples (87.3%) of the test-set were correctly

Table 3
Composition of training and test sets, according to the geographical origin of
Virgin Olive Oil samples.

Origin Training-set Test-set

Tunisia 74 11
Spain 308 32
Portugal 74 24
Italy 308 100
Greece 206 40
Other 30 10
Total 1000 217

Table 4
Prediction obtained for each geographical origin using data from the 13 molecules originated from the LOX pathway. For each origin, two types of validation
obtained by LDA are reported: the internal one was based on leave-one-out cross-validation run on the training-set; the external one was obtained applying the model
on the external test-set. In each line, we reported the percentage and the number (in the brackets) of Virgin Olive Oil samples of that origin assigned by the model to
the different origins. The figures in bold corresponds to the correctly assigned samples. The last two columns report the total number of samples belonging to the
conditions of each line, and the percentage and the number (in the brackets) of samples classified by the model according to the criteria described in the text.

Origin Validation Tunisia Spain Portugal Italy Greece Other Total Classified

Tunisia Internal 87.1% (61) - – 10.0% (7) 1.4% (1) 1.4% (1) 74 94.6% (70)
External 100% (11) - – – – – 11 100% (11)

Spain Internal 2.7% (7) 86.7% (229) 8.0% (21) 2.7% (7) – – 308 85.7% (264)
External – 96.6% (28) – 3.5% (1) – – 32 90.6% (29)

Portugal Internal 1.8% (1) 12.5% (7) 75.0% (42) 1.8% (1) – 8.9% (5) 74 75.7% (56)
External – 18.2% (4) 50.0% (11) – 13.6% (3) 18.2% (4) 24 91.7% (22)

Italy Internal 11.5% (30) 3.1% (8) 3.4% (9) 72.5% (190) 0.8% (2) 8.8% (23) 308 85.1% (262)
External 13.3% (11) 2.4% (2) 2.4% (2) 66.3% (55) 3.6% (3) 12.1% (10) 100 83.0% (83)

Greece Internal 4.5% (8) 1.1% (2) – – 93.3% (167) 1.1% (2) 206 86.9% (179)
External 2.9% (1) 2.9% (1) – – 94.3% (33) – 40 87.5% (35)

Other Internal 12.5% (3) 8.3% (2) 4.2% (1) 4.2% (1) – 70.8% (17) 30 80.0% (24)
External – – 12.5% (1) – – 87.5% (7) 10 80.0% (8)
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classified, that is even higher than the 86.2% obtained with the first
model, built using both FAs and VOCs (Table 6). In particular, this
model is able to correctly classify samples from all the classes of geo-
graphical origin in percentages of at least 86%, reaching percentages
higher than 97% for Greek and Tunisian samples when it was used in
the external test-set. In this model, Portuguese samples are the ones
worst classified, mainly because a certain percentage of them are
classified as Spanish, likely because both the two countries belong to
the Iberic peninsula, as discussed above.

All the prediction results obtained with the three proposed models
are compared in Table 6. The first PCA-LDA model built using both FAs
and VOCs gave the best results in terms of percentage of classified
samples (97.2%), but the best results in terms of percentage of correctly
classified samples (88.1%) were obtained using the third model, built
using the 25 VOCs selected by highest F-ratio values, with an only
slightly lower percentage of classified samples (94.5% in external va-
lidation). It is worth noting that external prediction of this latter model
gave better results in terms of classified samples and comparable results
in terms of correctly classified samples, suggesting a strong robustness

of the proposed model.
For these reasons, for authentication of the geographical origin of

commercial virgin olive oil samples, we propose the third model using
LDA based on the quantitative data about the first 25 VOCs in Table 2
(in bold), selected after applying one-way ANOVA.

3.3. Application of the proposed model to binary mixtures of VOOs from
different geographical origins

The prediction capability of the third model was further validated
applying it for predict the geographical origin of 80 virgin olive oils
constituted by binary mixtures of oils from Tunisia, Spain, Portugal,
Italy and Greece. This approach is intended as preliminary, in that
applied only to a set of available samples that are not homogenous in
terms of representativeness of the five origins, with a prevalence of
mixtures Spain/Portugal. The results are presented in Table 7 in which,
for each sample, the real composition and the predicted composition by
the model are indicated. Only for 5 out of the 80 samples (6.3%) the
predicted main origin resulted in disagreement, for 11 (13.8%) it was
confused between Spain and Portugal, and for 64 (80%) it was in
agreement.

These preliminary results confirm again the reliability of the third
model in authentication of the geographical origin of virgin olive oil.
Further studies are desirable for confirming the usefulness of the pro-
posed approach in authentication of the geographical origin of mixtures
of virgin olive oils of different provenances, also aiming at proposing a
reliable chemometric tool for discovering frauds related to the geo-
graphical origin of EVOOs.
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Fig. 1. Score of each Virgin Olive Oil sample on the plane of the first two ca-
nonical variables (74% of the variance explained). In yellow, the mean position
of all the scores related to a single geographical origin.

Table 5
Prediction obtained for each geographical origin using data from the first 25 VOCs selected according to the highest F-ratio values (Table 2). For each origin two types
of validation obtained by LDA are reported: the internal one was based on leave-one-out cross-validation run on the training-set; the external one was obtained
applying the model on the external test-set. In each line, we reported the percentage and the number (in the brackets) of Virgin Olive Oil samples of that origin
assigned by the model to the different origins. The figures in bold corresponds to the correctly assigned samples. The last two columns report the total number of
samples belonging to the conditions of each line and the percentage and the number (in the brackets) of samples classified by the model according to the criteria
described in the text.

Origin Validation Tunisia Spain Portugal Italy Greece Other Total Classified

Tunisia Internal 91.2% (62) - 1.5% (1) 5.9% (4) – 1.5% (1) 74 91.9% (68)
External 100% (11) - – – – – 11 100% (11)

Spain Internal 2.6% (7) 89.1% (245) 3.3% (9) 5.1% (14) – – 308 89.3% (275)
External – 90.3% (28) 3.2% (1) 6.5% (2) – – 32 96.9% (31)

Portugal Internal 3.2% (2) 12.7% (8) 77.8% (49) 1.6% (1) – 4.8% (3) 74 85.1% (63)
External 8.3% (2) 16.7% (4) 66.7% (16) – 4.2% (1) 4.2% (1) 24 100% (24)

Italy Internal 3.5% (10) 2.1% (6) 2.1% (6) 86.9% (251) 0.7% (2) 4.8% (14) 308 93.8% (289)
External 2.1% (2) 2.1% (2) 3.2% (3) 86.2% (81) 2.1% (2) 4.3% (4) 100 94.0% (94)

Greece Internal 0.5% (1) 1.0% (2) – 3.6% (7) 94.3% (182) 0.5% (1) 206 93.7% (193)
External – – 2.8% (1) – 97.2% (35) – 40 90.0% (36)

Other Internal 15.4% (4) 7.7% (2) 7.7% (2) 3.9% (1) – 65.4% (17) 30 86.7% (26)
External – – 11.1% (1) – – 88.9% (8) 10 90.0% (9)

Table 6
Comparison of the prediction results obtained with the three proposed models
in terms of percentage of Virgin Olive Oil samples classified according to the
proposed criteria and of percentage of samples correctly classified according to
their geographical origin. Values are expressed in percentage. In the brackets,
the prediction results obtained by external validation.

Model Classified samples
(%)

Correctly classified
samples (%)

1 PCA-LDA (FAs + VOCs) 97.2 86.3
2 LDA (VOCs from LOX) 85.5 (86.6) 82.6 (77.1)
3 ANOVA-LDA (25 VOCs) 91.4 (94.5) 88.1 (87.3)
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Table 7
Evaluation of the composition of binary mixtures of VOOs from different geographical origins by the third model. In the column
“result”, “ok” indicates that the predicted main origin is in agreement with the real composition, “no” indicates that it is not in
agreement and “sp” indicates that the predicted main origin is Spain while the real main origin is Portugal or vice versa.

n° Composition Result Prediction

S% P% T% I% G% S% P% T% I% G% O%

M-1 90 10 ok 99 1
M-2 90 10 ok 99 1
M-3 90 10 ok 93 6 1
M-4 90 10 no 34 27 39
M-5 90 10 ok 97 3
M-6 89 11 ok 97 3
M-7 89 11 ok 96 2 2
M-8 89 11 ok 94 4 1 1
M-9 89 11 ok 98 1 1
M-10 88 12 ok 99 1
M-11 88 12 ok 98 2
M-12 88 12 sp 100
M-13 85 15 ok 99 1
M-14 85 15 ok 91 2 2 3 2
M-15 85 15 ok 98 2
M-16 83 17 no 8 2 90
M-17 81 19 ok 97 1 1 1
M-18 81 19 ok 100
M-19 81 19 ok 88 6 6
M-20 80 20 ok 96 2 1 1
M-21 80 20 ok 89 8 2 1
M-22 80 20 ok 92 3 5
M-23 80 20 ok 81 10 9
M-24 80 20 ok 98 2
M-25 80 20 ok 96 2 1 1
M-26 80 20 ok 98 2
M-27 80 20 sp 100
M-28 80 20 ok 93 7
M-29 79 21 ok 66 1 10 13 2 8
M-30 79 21 ok 82 9 1 5 3
M-31 79 21 ok 80 2 2 9 7
M-32 78 22 ok 95 4 1
M-33 77 23 ok 96 3 1
M-34 75 25 ok 85 8 7
M-35 75 25 ok 97 3
M-36 75 25 ok 97 1 1 1
M-37 75 25 ok 98 2
M-38 73 27 ok 86 9 5
M-39 71 29 ok 95 4 1
M-40 71 29 ok 95 4 1
M-41 71 29 ok 98 1 1
M-42 70 30 ok 57 40 3
M-43 70 30 ok 64 35 1
M-44 70 30 ok 100
M-45 70 30 ok 93 5 1 1
M-46 70 30 ok 90 3 5 1 1
M-47 70 30 ok 94 6
M-48 70 30 ok 98 1 1
M-49 69 31 sp 17 80 1 2
M-50 69 31 sp 87 11 2
M-51 67 33 ok 97 2 1
M-52 65 35 ok 94 4 1 1
M-53 64 36 ok 78 20 2
M-54 64 36 ok 86 4 10
M-55 64 36 sp 13 87
M-56 65 35 ok 72 26 1 1
M-57 61 39 ok 86 13 1
M-58 61 39 ok 85 14 1
M-59 60 40 ok 66 34
M-60 60 40 ok 90 3 1 4 2
M-61 59 41 ok 93 7
M-62 59 41 ok 91 8 1
M-63 59 41 ok 97 2 1
M-64 55 45 ok 85 11 4
M-65 55 45 ok 74 15 1 10
M-66 55 45 ok 46 45 6 3
M-67 50 50 sp 79 19 1 1
M-68 50 50 no 99 1
M-69 31 69 sp 96 3 1
M-70 31 69 sp 63 35 2

(continued on next page)
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4. Conclusions

A reliable chemometric approach for authentication of the geo-
graphical origin of virgin olive oils from the main worldwide producing
countries has been proposed in this manuscript. The model was built
using quantitative data collected analyzing the volatile fraction of 1217
virgin olive oils by a HS-SPME-GC-MS quantitation method never ap-
plied for this purpose: the model applies Linear Discriminant Analysis
only on 25 VOCs selected using one-way ANOVA and allows classifying
oil samples according to the categories of Italy, Spain, Tunisia,
Portugal, Greece and Other.

The main novelties with respect to the current literature are the use
of a dataset based on more than 1200 commercial virgin olive oil
samples from three consecutive olive oil crops, the application of a
recently validated HS-SPME-GC-MS method, the simultaneous authen-
tication of the geographical origin of virgin olive oils from the first five
worldwide producing countries, and the application of the proposed
chemometric approach for the identification of more than one origin in
binary mixtures of VOOs.

The proposed model showed a very good predictive capability, with
87.3% of correctly classified samples during external validation, and
percentages even higher than 97.1% for some specific origins. It showed
a good predictive capability also when it was applied on binary mix-
tures of oils from different origins. Some attempts to improve the model
should be tried searching for further volatile molecules able to differ-
entiate between the different origins, enlarging the number of dis-
criminated origins and developing further statistical models.

The approach proposed in this manuscript represents a very useful
tool for the olive oil sector, easily applicable in testing laboratories for
the quality control of virgin olive oils thus helping in protecting con-
sumers and producers from frauds.
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Abbreviations

ANOVA Analysis of Variance
CAD Charged Aerosol Detector
EVOO extra virgin olive oil
FAs fatty acids
FAMEs fatty acid methyl esters
FID Flame Ionization Detector
HCA Hierarchical Cluster Analysis
HPLC High Performance Liquid Chromatogrpahy
HS-SPME-GC-MS head space-solid phase micro extraction-gas chro-

matograph-mass detector
IRMS isotope ratio analysis
LIBS Laser Induced Breakdown Spectroscopy
LOX lipoxygenase
LSD Least Significant Difference
LVOO lampante virgin olive oil
MS Mass Detector
NMR nuclear magnetic resonance
PCA Principal Component Analysis
PLS-DA Partial Least Squares Discriminant Analysis
SIFT-MS Selected Ion Flow Tube Mass Spectrometry
VOC Volatile Organic Compound
VOO virgin olive oil
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