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ABSTRACT: A reliable and robust tool for supporting the panel test in virgin olive oil classification is still required. We
propose four chemometric approaches based on t test, principal component analysis (PCA) and linear discriminant analysis
(LDA), applied for combining sensorial data, and chemical measurements. The former was from the panel test, and the latter
was from headspace solid-phase microextraction−gas chromatography−mass spectrometry quantitation of 73 volatile organic
compounds (VOCs) of 1223 typical commercial virgin olive oils, with most of them recognized as difficult to classify with
accuracy by the panel test. The approaches were developed and validated, and the best results, with 83.5% correct classification,
were using the PCA−LDA approach. Among the other methods, developed for proposing simplified procedures based on a
smaller number of VOCs, the best method gave 80.1% correct classification only using 10 VOCs. All of the approaches
suggested that octane, heptanal, pent-1-en-3-ol, Z-3-hexenal, nonanal, and 4-ethylphenol should be considered as a basis of
volatiles for classification of olive oil samples.
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■ INTRODUCTION

There are several reasons that lead to the consideration of extra
virgin olive oil (EVOO) as the highest quality product among
edible oils. It is only obtained by physical−mechanical
methods, is rich in oleic acid, shows pleasant taste and smell,
and contains the highest amount of bioactive phenols
responsible for several biological properties.1−5

The composition of the volatile fraction of a virgin olive oil
is crucial to define the sensorial notes, which, in turn, are
responsible for sample commercial classification. According to
European legislation6 and International Olive Council (IOC)
trade standards, the official method to classify VOOs is the
panel test, carried out by a group of at least eight trained
panelists and a panel leader.7

The panel test classifies virgin olive oils taking into account
the presence of a defined group of sensory defects as rancid,
winey, musty, earthy, and fusty, and only those oils showing no
defects are classified as EVOO. This latter category is also
characterized by the presence of positive attributes, particularly
the green and fruity sensations. These sensations are mainly
related to the activation of the lipoxygenase cascade (LOX
pathway) during the olive crushing and malaxation steps of the
milling process.8−11 On the contrary, samples characterized by
the presence of defects with a median below 3.5 are classified
as virgin olive oil (VOO), while those with a median of defects
greater than 3.5 are classified as lampante virgin olive oil
(LVOO). This latter category is not edible as such but, after a

refining process, is mixed to VOO or EVOO to obtain olive oil
(OO).
Overall, the composition of VOCs is affected by not only

pedoclimatic conditions, cultivar, ripening stage, drupes
harvesting, and storage conditions of the fruit12−16 but also
the technological parameters applied during milling.17,18

Over the years, the possibility to support the sensorial
evaluation with reliable chemical data related to the high
number of volatile organic compounds (VOCs) of virgin olive
oil has been recognized as crucial. Morales, Luna, and
Aparicio19 proposed the use of dynamic headspace gas
chromatography−mass spectrometry (DHS−GC−MS) to
detect the molecules responsible for the main sensorial defects
of virgin olive oil, specifically of fusty, mustiness−humidity,
winey−vinegary, and rancid. To improve the capability of
detecting and quantifying also the VOCs present in very low
concentrations, an eligible method to concentrate the volatile
compounds of the headspace before the gas chromatography
(GC) analysis is required and the use of solid-phase
microextraction (SPME) was introduced for this goal. Thus,
nowadays, one of the more appropriate tools is certainly the
headspace solid-phase microextraction−gas chromatography−
mass spectrometry (HS−SPME−GC−MS) analysis, widely
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applied to study the VOCs of virgin olive oils.7,20−22 This
technique has shown great potential for olive oil quality
control, being suitable for targeted but also untargeted
investigations.23 To improve the power of HS−SPME−GC−
MS analysis, the application of validated procedures suitable to
guarantee reliability and consistency of the results and the
possibility to routinely apply the method to check the presence
of defects and evaluate the quality of EVOOs are crucial.
Romero et al.20 validated a HS−SPME−GC−MS method for
quantification of 29 VOCs in virgin olive oils. More recently,
Fortini et al.7 proposed a validated method for quantification
of 71 VOCs, including not only analytes responsible for the
negative attributes but also the molecules associated with
positive sensorial notes. One of the key steps of such a method
is the use of 11 internal standards for area normalization,
selecting the more suitable one for each of the analyzed VOCs.
The main goal of this work was to propose a reliable and

objective tool for supporting the panel test in virgin olive oil
classification, helping the work of the expert panelists. The
steps of the work are summarized as follows: (i) quantitation
of 73 VOCs in more than 1200 virgin olive oil samples using
the method proposed by Fortini et al.,7 (ii) sensory evaluation
of the same samples by the panel test, (iii) development and
validation of several predictive models for sample classification
based on correlation between chemical and sensory data, (iv)
definition of chemical indices based on selected VOCs
responsible for oxidative and microbiological defects and
green and fruity notes of virgin olive oils, and (v) comparison
of the predictive results obtained from the different
approaches.

■ MATERIALS AND METHODS
Chemicals. All chemicals and standards of analytical reagent grade

were from Sigma-Aldrich (Steinheim, Germany). A refined olive oil
(ROO) free from VOCs was used for preparing solutions for external
calibration curves of the 73 VOCs (ExtStd). Internal standard
solution was prepared weighing acetic acid-d3, 6-chloro-2-hexanone,
butanol-d10, 4-methyl-2-pentanol, 3-octanone, ethyl acetate-d8, 3,4-
dimethylphenol, toluene-d8, and trimethylacetaldehyde in ROO
(IntStd). Six diluted solutions were then prepared and used for
building a six-point linear least squares calibration line for each
analyte: each diluted solution was constituted by the same amount of
IstStd and different amounts of ExtStd, chosen according to previous
works,7 to cover their typical contents in olive oils. The diluted
standard solutions were stored in the dark at −20 °C until
chromatographic analyses.
Virgin Olive Oil Samples. A total of 1223 virgin olive oil samples

were collected from the Carapelli laboratory (Carapelli S.p.A.,
Tavarnelle Val di Pesa, Florence, Italy) during three harvesting
years, i.e., 2016/2017, 2017/2018, and 2018/2019. Samples were
from several geographic origins (Spain, 34.5%; Italy, 26.7%; Greece,
23.6%; Portugal, 6.9%; Tunisia, 6.7%; and other, 1.6%) and were
classified after chemical and sensorial analysis, as described in the next
paragraph.
Chemical and Sensorial Analysis for Oil Classification.

Samples were classified according to chemical and sensorial analysis:
legal quality indices were determined according to the analytical
methods reported in the European Regulation EEC 2568/91,6 and
results used for confirming the classification of samples are not
reported in the paper.
Sensorial characteristics were then assessed according to EEC

2568/91 by a panel of 8−12 trained tasters coordinated by a panel
leader, acknowledged by the Italian Ministry of Agricultural Policies
(MIPAAF). Each taster smelled and tasted the sample and marked the
intensity of negative (rancid, fusty/muddy, musty/humid, winey/
vinegary, and other) and positive (fruity, bitter, and pungent)

attributes on a 0−10 cm unstructured scale. Samples with a median of
defects of 0 and median of fruity notes greater than 0 were classified
as EVOO; those with a median of defects between 0 and 3.5 and
median of fruity notes greater than 0 were classified as VOO; and
finally those with a median of defects greater than 3.5 and/or median
of fruity notes of 0 were classified as LVOO. Except for five samples,
classified as LVOO and considered as outliers, all of them were
classified as EVOO (562) and VOO (656) and were with a median of
defects lower than 1.5.

Samples were first labeled as EV (those classified as EVOO) or DE
(defective, those classified as VOO). The defective samples were
further labeled as OX (defective for oxidative defect, if the major
defect was rancid) or MI (defective for microbiological defect, if the
major defect was mustiness−humidity, fusty, or winey−vinegary).
When the two types of defects were at a similar extent (i.e., difference
of medians below 0.5), the sample was considered defective for both
of the types of defects.

HS−SPME−GC−MS Analysis. The volatile fraction of all samples
was analyzed by HS−SPME−GC−MS, with the method proposed by
Fortini et al.,7 slightly modified by the addition of acetic acid,
methanol, and ethanol to the set of quantified molecules. Briefly, 4.3 g
of sample and 0.1 g of internal standard mix solution were weighed in
20 mL screw cap vials. A SPME fiber 50/30 μm divinylbenzene/
carboxen/polydimethylsiloxane (DVB/CAR/PDMS) by Agilent
(Palo Alto, CA, U.S.A.) was exposed for 20 min in the vial headspace
under orbital shaking at 400 rpm, after equilibration for 5 min at 45
°C. The absorbed molecules were then desorbed for 1.7 min in the
injection port of a 6890N GC system equipped with a MS detector,
model 5975 (Agilent, Palo Alto, CA, U.S.A.). After desorption, a fiber
backout was carried out in a backout unit for 20 min at 260 °C to
avoid carryover phenomena among subsequent samples. A HP-
Innowax capillary column (50 m × 0.2 mm inner diameter, 0.4 μm
film thickness) was employed. The initial oven temperature was kept
at 40 °C for 2 min, raised to 156 °C with a 4 °C min−1 gradient, and
then raised to 260 °C with a 10 °C min−1 gradient. Helium was used
as the carrier gas at 1.2 mL min−1. The temperatures of the ion source
and transfer line were 230 and 250 °C, respectively. Mass detector
conditions were scan mode within the range of 30−350 Th, 1500 Th/
s, and ionization energy (IE) of 70 eV. Mass spectra and retention
times of injected authentic standards were compared to those of each
peak for identification of the 73 VOCs.

The two VOCs 2-methylbutan-1-ol and 3-methylbutan-1-ol co-
eluted; thus, they were evaluated together, and the output of the
analysis was given by 72 quantitative data for each oil sample. Each of
the 72 VOCs was quantified on the basis of a six-point linear least
squares calibration line, where the area ratio [analyte peak area over
the peak area of the selected internal standard (Table S1 of the
Supporting Information)] was plotted versus the amount ratio
(analyte amount over internal standard amount). For each analytical
sequence, carried out in different working days, the 72 calibration
lines were rebuilt using the same stored standard solutions.

The method was validated again in the Carapelli chemical
laboratory, following the same approach used by Fortini et al.7 The
parameters of validation are reported in Table S1 of the Supporting
Information for all of the quantified VOCs: limit of quantification
(LOQ), limit of detection (LOD), linearity (in terms of R2

adj and
range of linear calibration), accuracy (in terms of trueness and
precision), sensitivity, and selectivity.24,25

Statistics. Typical statistical tools were used working on a data set
of 1218 virgin olive oil samples, to propose reliable and robust
approaches to support the panel test in virgin olive oil classification.
The t test was applied to assess the capability of each VOC in
discriminating between different categories of samples, through the
evaluation of calculated p values (Microsoft Office Professional Plus
2016). Principal component analysis (PCA) was used as the non-
supervised technique for reducing the dimensionality of the data,
using the concentrations of each VOC as variables. Finally, linear
discriminant analysis (LDA) was run using reduced sets of variables
[the scores on the selected principal components (PCs) or the more
significant VOCs according to the t test] to find linear combinations
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of variables giving the best linear fit able to separate categories of
samples. Both PCA and LDA were run using OriginPro 2018
(OriginLab Corporation, Northampton, MA, U.S.A.; http://www.
originlab.com).
For the defective samples, when LDA was applied for

discriminating between OX and MI samples, those oils characterized
by both oxidative and microbiological defects according to paragraph
2.3 were considered twice, one time as MI and one time as OX.
Consequently, the total data set increased from 1218 to 1295 samples
and was randomly split in a training set (1000 samples) and a test set
of 295 independent samples.

■ RESULTS AND DISCUSSION

The final goal of this work is to propose reliable tools for
supporting the panel test in virgin olive oil classification, easily
applicable by quality control laboratories for their routine
assessments. Our approach is based on HS−SPME−GC−MS
quantitation of 73 VOCs in more than 1200 oil samples to
obtain a data set for a successive statistical analysis. The HS−
SPME−GC−MS method uses nine internal standards for area
normalization and 72 six-point linear least squares calibration
lines for VOC quantitation. The method is a slightly modified
version of the method recently validated.7 In particular,
methanol, ethanol, and acetic acid were added to the set of
the quantified VOCs to obtain a more suitable system for
virgin olive oil classification.19,26−28 Furthermore, to simplify
the original method,7 hexanoic acid-d11 and ethyl hexanoate-
d11 were removed from the pool of internal standards because
they were used for area normalization of only two and one
analytes, respectively. In light of these slight modifications, the
method has been validated again, and parameters for validation
are listed in Table S1 of the Supporting Information.
The volatile fraction of all samples was analyzed by such a

method, and simultaneously, the same oils were analyzed by
the panel test and classified as extra virgin (EV) or defective
(DE) and defective for oxidative (OX) or microbiological
(MI) defects (paragraph 2.3). Almost all of the analyzed
samples were representative of the marketplace; most of them
had a median of defect lower than 1.5 and had been recognized
as difficult to be classified with accuracy by the panel test. In
our opinion, this sample set was the most suitable for building
reliable models for virgin olive oil classification, also

considering that the huge number of samples allows for the
acquisition of very robust predictive models.
The chemical and sensory data were used to develop four

different chemometric approaches, validated using a group of
independent samples (test set). Results obtained with each
approach were compared to the panel test to confirm the
capability of the models to correctly predict sample
classification; finally, results from the different models were
compared.

Approach 1: PCA−LDA. This approach considers all of
the variables initially available, and none of the available
information is a priori excluded when the model is created;
thus, it likely gives the best results. PCA was applied on the 72
variables (the quantified VOCs) of both the training set and
test set to reduce the dimensionality of the data. The scree plot
in Figure S1 of the Supporting Information shows that the
elbow point is reached with approximately 15 PCs; we selected
a slightly higher number of PCs to be sure to retain all of the
useful variance but excluded those PCs that only caused noise
(20 PCs with a total explained variance of 72.7%). Then, the
predictive capability of the LDA model was internally validated
by a full 10-fold cross-validation procedure, working on the
input information given by a data matrix (1000 × 20)
containing the scores of the 1000 virgin olive oils of the
training set on the 20 selected PCs. To this goal, 10 equal sized
subset of samples were created, starting from the entire data
set, and the cross-validation procedure was repeated 10 times
using each of the 10 subsets once as the test set (Scheme S1 of
the Supporting Information). The model was then externally
validated using the test set (295 independent samples). The
proposed model was set for classifying samples in the
categories extra virgin (EV), defective for oxidative defects
(OX), and defective for microbiological defects (MI); both MI
and OX were considered defective samples (DE). Samples
were allocated in the different categories based on the suitable
threshold value of post-classification probability (CP th %)
relative to each category. This threshold value was selected by
an iterative process to give the best results in terms of lower
percentages of non-classified samples and greater percentages
of correctly classified samples (Figure S2 of the Supporting
Information shows an example of how these parameters change
as a function of the selected threshold value). Non-classified

Table 1. Accuracy of the Classification of Samples during the 10-Fold Cross-Validation by the PCA−LDA Model Based on the
First 20 PCsa

among the classified samples (%)

PCA−LDA test set number CP th (%) not classified (%) correct classification (wrong defect) misclassified

1 39 10.0 82.9 (21.4) 17.1
2 40 6.9 89.3 (11.6) 10.7
3 42 7.7 85.0 (13.3) 15.0
4 39 6.9 79.3 (9.1) 20.7
5 41 6.2 82.8 (10.7) 17.2
6 42 7.7 74.2 (11.7) 25.8
7 43 8.5 79.0 (13.4) 21.0
8 42 2.3 78.7 (13.4) 21.3
9 42 3.1 88.1 (11.1) 11.9
10 43 5.4 82.1 (8.9) 17.9
mean ± sd 41.3 6.5 ± 2.4 82.1 ± 4.6 (12.5 ± 3.5) 17.9 ± 4.6

aEach row shows results of each round of the cross-validation process, with the averaged results in the last row. CP th (%) is the selected threshold
value of post-probability used for allocating samples in the different categories. Not classified are samples that the model was not able to classify
according to the selected CP th values. Classified samples are split into those correctly classified (with samples correctly classified as VOO but with
a misidentified defect in parentheses) and those misclassified.
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samples were the samples that, according to the selected CP th
%, were classified in two different categories or in none of
them. The capability of the model in discriminating between
EV and DE was evaluated with the main goal of classifying
samples as EVOO or VOO/LVOO. Within the DE samples,
the capability of the model in discrimination between OX and
MI was also evaluated, with the further goal of understanding
the origin of the defects for the lower category samples.
Table 1 shows results obtained for each of the 10 rounds of

the cross-validation, and the predictive performance of the
model is finally given in the last line, where the results of cross-
validation are averaged over the rounds. The percentage of
non-classified samples never exceeded 10.0%, with a mean of

6.5%. Among the classified samples, an average of 82.1% was
correctly classified, with only 12.5% that were VOO samples
with a misidentified defect. Noteworthy, the percentage of
correctly classified samples reached values of almost 90% in
two cases. During external validation, the model was able to
classify 94.7% of samples, with 83.5% of correctly classified
samples (see Table 8). These results confirm that the PCA−
LDA model, easily applicable after VOC quantification, is in
agreement with the panel test in prediction of virgin olive oil
classification for a very high percentage of samples. In our
opinion, this approach, after validation in other laboratories
and working with several panels, can be proposed as a useful

Table 2. List of the 23 VOCs with Averaged p Values of <0.01 after Three Rounds of the t Testa

codes of VOCs VOCs p value EV−OX p value EV−MI p value OX−MI averaged p value

24D E,E-deca-2,4-dienal 9.24 × 10−13 3.90 × 10−6 7.67 × 10−9 0.0000013
P propanol 2.22 × 10−7 1.89 × 10−19 4.93 × 10−6 0.0000172
O3OL oct-1-en-3-ol 1.45 × 10−26 1.07 × 10−12 1.21 × 10−4 0.0000403
HEP heptanal 7.16 × 10−22 2.09 × 10−20 2.04 × 10−4 0.0000679
2P pentan-2-ol 4.52 × 10−4 9.48 × 10−27 2.06 × 10−9 0.000151
24N E,E-nona-2,4-dienal 5.65 × 10−12 4.43 × 10−3 3.76 × 10−4 0.000273
IV isovaleraldehyde 1.06 × 10−5 3.55 × 10−10 1.69 × 10−3 0.000568
4EP 4-ethylphenol 9.73 × 10−9 7.98 × 10−20 2.56 × 10−3 0.000853
Z3HL Z-3-hexenal 7.89 × 10−23 1.23 × 10−29 2.57 × 10−3 0.000858
1P3O pent-1-en-3-ol 2.13 × 10−17 1.38 × 10−35 2.96 × 10−3 0.000987
E2H E-2-hexenal 2.18 × 10−11 2.73 × 10−23 4.11 × 10−3 0.001371
N nonanal 1.37 × 10−11 1.11 × 10−15 4.13 × 10−3 0.001377
HEX hexenal 7.23 × 10−5 5.60 × 10−3 7.87 × 10−9 0.001889
G guaiacol 6.34 × 10−5 4.57 × 10−8 8.57 × 10−3 0.002879
OE octane 6.30 × 10−15 4.58 × 10−32 9.69 × 10−3 0.003232
BAC butanoic acid 4.21 × 10−10 3.28 × 10−4 0.0105 0.003605
E2O E-2-octenal 6.19 × 10−15 4.06 × 10−8 0.0123 0.004096
E2PA E-2-pentenal 3.08 × 10−4 2.22 × 10−10 0.0131 0.004473
EA ethyl acetate 1.62 × 10−4 4.43 × 10−9 0.0139 0.004689
ET ethanol 1.29 × 10−8 4.00 × 10−22 0.0152 0.00506
M methanol 2.05 × 10−3 0.0179 1.44 × 10−6 0.006635
IB isobutanol 0.0200 1.30 × 10−25 4.95 × 10−6 0.006673
EPR ethyl propanoate 3.05 × 10−5 2.08 × 10−8 0.0220 0.007352

aFor each VOC, p value EV−OX, p value EV−MI, and p value OX−MI indicate its capability in discriminating between EV and OX samples,
between EV and MI samples, and between OX and MI samples, respectively.

Table 3. Accuracy of the Classification of Samples during the 10-Fold Cross-Validation by the t Test−LDA Model Based on 23
Selected VOCsa

among the classified samples (%)

t test−LDA test set number CP th (%) not classified (%) correct classification (wrong defect) misclassified

1 41 5.4 79.7 (18.7) 20.3
2 42 10.0 82.1 (12.0) 17.9
3 41 4.6 77.4 (8.9) 22.6
4 40 10.8 82.8 (9.5) 17.2
5 40 8.5 80.7 (8.4) 19.3
6 40 5.4 70.7 (12.2) 29.3
7 42 7.7 75.0 (10.8) 25.0
8 40 3.1 76.2 (8.7) 23.8
9 42 6.2 80.3 (9.0) 19.7
10 42 2.3 81.1 (9.4) 18.9
mean ± sd 41 6.4 ± 2.8 78.6 ± 3.7 (10.8 ± 3.1) 21.4 ± 3.7

aEach row shows the result of each round of the cross-validation process, with the averaged results in the last row. CP th (%) is the selected
threshold value of post-probability used for allocating samples in the different categories. Not classified are samples that the model was not able to
classify according to the selected CP th values. Classified samples are split into those correctly classified (with samples correctly classified as VOO
but with a misidentified defect in parentheses) and those misclassified.

Journal of Agricultural and Food Chemistry Article

DOI: 10.1021/acs.jafc.9b03346
J. Agric. Food Chem. 2019, 67, 9112−9120

9115

http://dx.doi.org/10.1021/acs.jafc.9b03346


approach to support the panel test in virgin olive oil
classification.
Approach 2: t Test−LDA. As stated above, the PCA−

LDA approach uses all of the available information; thus, the
predictive performance is likely better than other models using
only parts of the initial information. However, no qualitative
information about the volatile molecules able to differentiate
between samples are gained by such an approach. This has
been the first reason that induced us to develop other models,
in which results are related to the chemical profile of samples.
The objective pursued by developing other models was to
propose simplified approaches, using a reduced number of
VOCs and/or shorter statistical procedures. By this way, we
were able to compare the predictive performance of several
models, all built starting from the same data set.
The t test−LDA approach uses the t test for reducing the

data set to those VOCs that showed the greatest ability in
discriminating between EV, OX, and MI samples. The t test
was run 3 times, for assessing the capability of each of the 72
VOCs in discriminating between EV and OX, between EV and
MI, and between OX and MI. For each VOC, the three
obtained p values (Microsoft Office Professional Plus 2016)
were averaged, and those VOCs with an averaged p value
smaller than 0.01 were considered able to discriminate
between EV, OX, and MI and were selected for the following
LDA. The 23 VOCs selected by this way are reported in Table
2.
The predictive capability of LDA was then validated using a

full 10-fold cross-validation procedure working on the input
information given by the data matrix (1000 × 23) containing
the quantitative data of the 23 selected VOCs for the 1000
samples of the training set. The model was then externally
validated using the test set of independent samples. Again,
samples were classified as EV or DE (with the DE samples
further classified as OX or MI) based on the selected CP th %
values (Scheme S2 of the Supporting Information).
Table 3 shows results obtained in each of the 10 rounds of

the cross-validation, and the predictive performance of the
model is finally given in the last line, where the results of cross-
validation are averaged over the rounds. The percentage of
non-classified samples was very similar to that from the PCA−
LDA model, with a mean of 6.4%. Among the classified
samples, an average of 78.6% was correctly classified, with only
10.8% with a misidentified defect. During external validation,
the model was able to classify 95.3% of samples, with 79.7% of
correctly classified samples (see Table 8).
The t test-LDA model gave a prediction only slightly worst

in comparison to the PCA−LDA model, with the advantage
that it also gives qualitative information on the VOCs more
able in discriminating between the different categories of oils
(Table 2). Qualitative aspects of this and the two following
approaches will be discussed and compared in a specific
paragraph.
Approach 3: t Test and Discriminant Value (t Test−

DSV). The next two approaches were developed for proposing
simplified models directly based on the quantitative data of
some selected VOCs. Also for developing the approaches
discussed in this paragraph, we considered twice the samples
characterized by both OX and MI defects. The t test was
applied twice to the training set (1000 samples) for selecting
two small groups of VOCs: one group to discriminate between
EV and DE and another group to discriminate between OX
and MI. In both of the cases, we selected the 10 VOCs with

the lowest p values; they are shown in Table 4, together with
the mean values of the amount of the selected VOCs in the
considered categories of samples.

Starting from 3, 5, or 10 of these VOCs, we defined two
indices (DX‑EV/DE and DX‑OX/MI): one for discriminating
between EV and DE and another for discriminating between
OX and MI. DX‑EV/DE and DX‑OX/MI are the indices for EV−DE
and OX−MI samples, respectively, where X is the number of
used VOCs (3, 5, or 10). The codes of the used VOCs are
explained in Table 4, and the obtained indices are defined
according to the following formulas:

= − +‐D 24HX (OE HEP)3 EV/DE

= − +‐D 24D (BA 2P)3 OX/MI

= + − + +‐D 24HX 1P3O (OE HEP H)5 EV/DE

= + + − +‐D 24D HEX IB (BA 2P)5 OX/MI

= + +

− + + + + +

+

‐D 24HX 1P3O Z3HL

(OE HEP H O3OL N V

4EP)

10 EV/DE

= + + + +

+ − + + +
‐D 24D HEX IB HEP O3OL

E2HA (BA 2P M P)

10 OX/MI

Table 4. List of 10 VOCs with the Lowest p Values after the
t Testa

A VOC EV/DE
codes of
VOCs

p value
EV/DE

mean
value EV

mean
value DE

octane OE 6.29 × 10−31 0.053 0.194
E,E-hexa-2,4-dienal 24HX 2.3 × 10−29 0.220 0.081
heptanal HEP 1.06 × 10−28 0.012 0.036
pent-1-en-3-ol 1P3O 5.23 × 10−26 0.431 0.299
heptanol H 2.50 × 10−24 0.011 0.020
Z-3-hexenal Z3HL 2.24 × 10−21 0.361 0.132
oct-1-en-3-ol O3OL 7.94 × 10−20 0.014 0.020
nonanal N 3.02 × 10−19 0.280 0.628
valeraldehyde V 9.32 × 10−19 0.083 0.129
4-ethylphenol 4EP 2.39 × 10−18 0.052 0.150

B VOC OX/MI
codes of
VOCs

p value
OX/MI

mean
value MI

mean
value OX

butyl acetate BA 1.15 × 10−7 0.005 0.002
2-pentanol 2P 1.66 × 10−7 0.010 0.006
E,E-deca-2,4-dienal 24D 1.66 × 10−7 0.079 0.206
hexanal HEX 1.71 × 10−7 0.651 0.995
isobutanol IB 1.3 × 10−6 0.021 0.032
methanol M 8.9 × 10−6 4.595 3.366
heptanal HEP 3.72 × 10−5 0.030 0.048
propanol P 8.4 × 10−5 0.022 0.014
oct-1-en-3-ol O3OL 1.16 × 10−4 0.019 0.022
E-2-hexenyl acetate E2HA 1.74 × 10−4 0.026 0.046

aFor each VOC, (A) p value EV/DE and (B) p value OX/MI indicate
the capability in discriminating between EV and DE samples and
between OX and MI samples, respectively. For each VOC, mean value
EV is the mean content of that VOC in EV samples, mean value DE is
the mean content of that VOC in DE samples, mean value MI is the
mean content of that VOC in MI samples, and mean value OX is the
mean content of that VOC in OX samples.
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We considered the mean amount of the selected VOC in
samples belonging to the two considered categories. For each
oil, the amount of such VOC was considered with a positive
sign when the mean amount was higher in one of the
considered categories and with a negative sign when the mean
amount was higher in another of the considered categories
(used values are in bold in Table 4).
For each of the three defined couples of DX, we identified a

discrimination value (DSVX‑EV/DE and DSVX‑OX/MI), selecting
the values able to give the best results in terms of lower
percentages of non-classified samples and greater percentages
of correctly classified samples (Scheme S3 of the Supporting
Information). With application of a tolerance factor of 10%
with respect to DSVX, non-classified samples were the samples
for which

× < < ×DDSV 0.90 DSV 1.10X X X

where DX is the value of the indices calculated for that sample.
Table 5 shows results obtained applying the model to the

test set of 295 independent samples and working with 3, 5, or

10 VOCs. The best results in terms of correctly classifying
samples were obtained working with five VOCs: 80.1% of
samples, of which 13.8% had a misidentified defect. These
results are not so diverse from those from the PCA−LDA

approach, so that this could be proposed as a simplified model
able to classify virgin olive oil samples based on the
quantitative analysis of only 10 selected VOCs: 5 for
discriminating between EV and DE samples and 5 for
discriminating between OX and MI.

Approach 4: Definition of Chemical Indices. This
approach aimed at defining suitable indices for classifying oil
samples as EV or DE and for a further discrimination between
OX and MI defective samples only based on quantitative data
of the 72 quantified VOCs. Data of the different VOCs were
initially corrected by suitable multiplicative factors for having
equal mean values for all 72 VOCs when they were averaged
over all 1218 samples, to guarantee that all of the molecules
gave the same contribution independently from their absolute
amount. The whole data set of the corrected data was
randomly split in a training set (923 samples) and a test set
(295 samples), and on the basis of results of the panel test,
samples of the training set were labeled as EV, OX, MI-Fu
(fusty/muddy defect), MI-Mu (musty/humid/hearth defect),
and MI-Wi (winey/vinegary defect); when more than one
defect was present, that sample was labeled with all of the
defects. Each of the five categories was considered one at a
time, and each time samples were split in the three groups: EV,
samples in which the considered defect was present, and other
samples (when the EV category was considered, the only
groups were EV and defective samples). Each time, for each
VOC, we calculated mean and standard deviation (sd) in each
group, and the means of the different groups were compared
dividing, for each defect, the mean of samples with that defect
(NDE) by the mean of EV samples (NEV).

=RV
N
N

DE

EV (1)

By this way, we obtained ratio values (RV) that indicated, on
average, how much each VOC was concentrated in samples
with the specific defect with respect to EV samples. The
molecules with the greater RV were selected as able to
discriminate between samples with the considered defect and
EV samples. Molecules with too high values of sd within a
specific class were excluded. Table 6 shows the VOCs selected
for each category. Because the typical defects of VOOs arise
from oxidative and microbiological defects, we defined one

Table 5. Accuracy of the Classification of Samples by the “t
Test Discriminant Value” Approach, Using 3, 5, or 10
VOCsa

DSV th
among the classified samples

(%)

number
of

VOCs EV/DE OX/MI
non-classified

(%)

correct
classification
(wrong
defect) misclassified

3 0.04 0.20 1.0 74.1 (10.8) 25.9
5 0.40 1.60 8.0 80.1 (13.8) 19.9
10 0.15 0.50 1.7 77.6 (11.5) 22.4

aDSV th is the selected threshold discriminant value used for
allocating samples in the different categories. Not classified are
samples within the range of DSV th × 0.90 − DSV th × 1.10,
considering 10% of tolerance. In parentheses, samples were correctly
classified as VOO but with a misidentified defect.

Table 6. Selected VOCs for Indices of the Categories Extra Virgin Olive Oil (EV), Oxidative Defect (OX), Fusty/Muddy
Defect (MI-Fu), Musty/Humid/Hearth Defect (MI-Mu), and Winey/Vinegary Defect (MI-Wi)a

EV MI-Fu MI-Wi MI-Mu OX

Z-3-hexenal butanoic acid acetic acid 6-methylhept-5-en-2-one octane
E,E-hexa-2,4-dienal octane ethanol 4-ethylphenol 6-methylhept-5-en-2-one
E-2-hexenal ethyl butanoate ethyl acetate guaiacol heptanal
E-2-pentenol phenol propanol E,E-deca-2,4-dienal
isobutanol 4-ethylguaiacol 2-methyl + 3-methylbutan-1-ol E-2-heptenal
pent-1-en-3-ol isovaleraldehyde pentan-2-ol nonanal

ethyl propanoate E-2-octenal
E-2-decenal
octanal
valeraldehyde
heptanol
nonanol
octanol

aFor each category, VOCs are ordered starting from those more able in discriminating EV from other samples (for EV category) or samples
defective for that defect from EV samples.
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index for oxidative defects and one for microbiological defects
(fusty/muddy, musty/humid/hearth, and winey/vinegary were
merged together). By this way, we aimed at creating an easy
model able to discriminate between EV and DE samples and
between defects generated by either oxidative or micro-
biological activities.
Three indices were thus created on the basis of the selected

VOCs (Scheme S4 of the Supporting Information): IOX, sum
of the corrected values of the VOCs in the category “OX”; IMI,
sum of the corrected values of the VOCs in the categories “MI-
Fu”, “MI-Wi”, and “MI-Mu”; and IEV, sum of the corrected
values of the VOCs in the category “EV”.
Values of these indices, calculated for all samples of the

training set, were used for building a table with decision criteria
for virgin olive oil classification (Table 7) based on the

threshold values that gave the best results in classification of
samples of the training set [i.e., 7.8% of non-classified samples
and 79.1% of correctly classified among the classified oils
(5.4% with wrong defect)]. The model was externally validated
by classifying samples of the test set, and results are reported in
Table 8: 8.7% of samples resulted in non-classified according
to the decision table, while among the classified samples, 77.0%
were correctly classified (5.5% with the wrong defect).

Qualitative Information on VOCs Responsible for the
Classification of Samples. The different approaches
developed and proposed in this paper allowed us to gain
information on the molecules able to discriminate between the
different categories of virgin olive oils and between the
different types of defects. The more detailed information was
obtained by approach 4 (definition of chemical indices) and is
reported in Table 6. For the EV category, in addition to VOCs

originating from the LOX pathway (pent-1-en-3-ol, Z-3-
hexenal, E-2-hexenal, and E-2-pentenol) and typically
associated with fruity notes,17,28−30 we can see a branched
C4 alcohol (isobutanol) and a C6 diunsaturated aldehyde (E,E-
hexa-2,4-dienal), molecules never associated with fruity notes
to the knowledge of the authors. With regard to the oxidative
defects, many of the selected VOCs were already reported
(octane, nonan-1-ol, and the aldehydes) or hypothesized (6-
methylhept-5-en-2-one) as associated with oxidation processes,
while the alcohols heptan-1-ol and octan-1-ol were never
associated with oxidative defects. Finally, with regard to
microbiological defects, almost all of the selected molecules for
fusty/muddy and winey/vinegary defects were already
described as associated with these defects, while those selected
for the musty/humid/hearth defect (column MI-Mu in Table
6) are different from the C8 alcohols and ketones usually
reported as associated with this defect,17,19 confirming that
further studies are necessary to better clarify the nature of the
VOCs responsible for the sensory attributes of virgin olive oils.
The molecules useful for discriminating between the

different categories using the t test−LDA approach are
reported in Table 4. Interestingly, all of the VOCs useful for
discriminating between EV and DE samples were also useful
for the above “definition of chemical indices”, with the only
exception of oct-1-en-3-ol (Table 6). Again, 18 of the 23
VOCs reported in Table 2, useful for discriminating between
different categories using the PCA−LDA approach, were also
useful for the above “definition of chemical indices”. In
particular, octane, heptanal, pent-1-en-3-ol, Z-3-hexenal,
nonanal, and 4-ethylphenol were useful for discriminating
between EV and DE samples in all of the proposed models and
should be considered as a basis pool of VOCs when the aim is
classify OO samples as EVOO or VOO/LVOO.

Comparison of the Models. This paper deals with
chemicals supporting the panel test in virgin olive oil
classification, which is desirable and still strongly required to
date. The novelty of the work with respect to models recently
proposed in the literature23,31 is mainly due to (i) the huge
number of samples, with most of them considered difficult to
be classified with accuracy by the panel test, (ii) the application
of a validated HS−SPME−GC−MS method never used before
for this purpose, (iii) the comparison of four methodological
approaches built using a set of 1000 oils and externally
validated with a set of 295 independent samples, (iv) the
identification of a reduced set of VOCs suitable for all
proposed models, and (v) the possibility to obtain a
classification of EV and DE samples in agreement with the
panel test with a percentage close to 80% using only 10
selected VOCs within the 72 evaluated VOCs.
When we look at the results in Table 8, we have to take into

account that the panel test is a sensorial test that not always
gives reliable classification;7,20,31 thus, the misclassified samples
could be misclassified by either our approach or the panel test.
Furthermore, our sample set, considered as the most suitable
for building a very reliable and robust chemometric approach
for virgin olive oil classification, was mainly constituted by oils
difficult to be classified with accuracy by the panel test. In light
of these considerations, the 83.5% of correct classification
obtained with the PCA−LDA model is a very satisfactory
result, which allows for the proposal of this model for future
official methodology in routine laboratories.
As said, the PCA−LDA model gave the best results in terms

of correctly classified samples (Table 8). The differences with

Table 7. Decision Table for Virgin Olive Oil Classification
According to the Chemical Indices Defined as Described in
Paragraph 3.4a

IMI IOX IEV classification (type of defect)

>0.70 >1.00 DE (OX + MI)
>0.70 <1.00 DE (MI)
<0.70 >1.00 DE (OX)
<0.70 <1.00 >0.15 EV
<0.70 <1.00 <0.15 non-classified

aIOX, index for oxidative defects; IMI, index for microbiological defects;
IEV, index for positive attributes; EV, extra virgin olive oil samples;
DE, defected samples; OX, oxidative defects; and MI, microbiological
defects.

Table 8. Comparison of the Classification of Samples
Obtained during External Validation of the Four Proposed
Models, Using the External Set of Independent Samplesa

among the classified samples (%)

model
non-classified

(%)
correct classification
(wrong defect) misclassified

1. PCA−LDA 5.3 83.5 (12.0) 16.5
2. t test−LDA 4.7 79.7 (10.1) 20.3
3. t test−DSV 8.0 80.1 (13.8) 19.9
4. chemical indices 8.7 77.0 (5.5) 23.0

aFor the “t test−DSV” model, the table reports results obtained using
five VOCs, while for the other three models, it reports results
obtained according to the described procedures.
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the other models were lower than expected, pointing out the
robustness of the approaches based on VOC evaluation. PCA−
LDA and t test−LDA models gave similar results in terms of
non-classified samples.
According to Table 8, the PCA−LDA model is herein

proposed as the more effective model for supporting the panel
test in virgin olive oil classification. The t test−DSV approach
could be a useful alternative for simplifying the analytical work,
strongly reducing the number of quantified VOCs. Note-
worthy, the model based on chemical indices gave the best
results for discriminating samples with different defects.
This study can help to counteract fraud in the olive oil sector

and enriches the literature of qualitative information about
VOCs able to discriminate between EVOO and VOOs and
between different kinds of defects. The crucial role of several
volatile molecules of virgin olive oils clearly emerges in this
work. Indeed, chemometric methods only based on VOC
quantification can be proposed for future official methodology
easily usable in routine laboratories for supporting the panel
test. To assess the reproducibility and robustness of the
proposed approaches, they have to be validated by the
combining results of sensory analysis by several panels and
chemical data on volatiles acquired in different analytical
laboratories.
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